
About Clarion,
SQL Data Bases And

The Clarion Handy Tools
A User’s Tutorial

CLARION, SQL AND THE CLARION HANDY TOOLS A USER’S TUTORIAL

© 2004 - The Clarion Handy Tools Page 17.03.2004 - 2

The Purpose Of this Application (HNDACCES.APP)

In really general terms, this demonstration application, like all CHT demos, is intended to illustrate
some aspect of The Clarion Handy Tools templates and classes. It's important to grasp that the
CHT tool kit is an extension of Clarion ABC. It integrates with ABC and works and behaves like
ABC. The CHT templates, in and of themselves - just like the ABC templates - don't do anything
much more than generate interface code to the underlying CHT and ABC classes. When you
embed into an ABC method inside one of your procedures using the Clarion Embeditor, the
template derives the class containing that method in such a way that the original ABC class is now
customized, or behavior-modified, by your embed. The Clarion Handy Tools templates and
classes work exactly the same way. The CHT templates, again like ABC, provide an interface
layer between the developer and the underlying classes. They ask you questions in the form of
template prompts and generate code resulting from the information garnered from you. That
generated code is almost always some kind of property-initialization code that prepares the class-
to-be-called, for work to be done, followed by one or more procedure/function calls into the target
class.

Since what the templates do is write custom interface-to-classes code on your behalf, based upon
your answers to template prompts, it stands to reason that you can write this code yourself too,
via embedding. HNDACCES.APP provides some examples of embed code as well.

HNDACCES.APP illustrates Clarion plus an SQL data base plus The Clarion Handy Tools working
together. It is not intended to be an example of good window design. In fact, the window designs
are, in most cases impractical for everyday purposes. They’re intended to illustrate SQL concepts
and CHT features, nothing more. Before we launch you into the specifics of the application here is
some background about Clarion and SQL data bases.

Clarion Has SQL Capability Built In

One of the many things The Clarion Handy Tools can help you do is work more efficiently and
easily with SQL data bases. This tutorial, in conjunction with the demonstration application that
accompanies it, discusses a variety of ways in which you can use The Clarion Handy Tools to
help you produce better Clarion applications that utilize SQL back ends. First, some background
on what Clarion can do alone with SQL data bases.

Clarion, in and of itself has the capability to communicate with SQL data bases built in, so that
even without The Clarion Handy Tools, you can build good, solid SQL applications. But there are
a few things you may not be aware of that Clarion applications do, as regards SQL back ends,
that are not necessarily optimum SQL practice.

If you're new to SQL you may not be aware that SQL works by request and response to and from
a back end data base. That is to say, you send a request - an SQL select statement - to the data
base and you get back a response (some data). The response is the set of records matching your
request. By the way, if you are new to SQL, here’s a website that teaches SQL syntax that may
prove to be a helpful reference: http://www.1keydata.com/sql/sql.html

When you use Clarion and you create a "filter" on an orders browse to say that you only want to
see orders for a specific customer that you've selected in the customer browse, that relationship
can be expressed by a simple filter such as this: ORD:CustomerID = CUS:CustomerID. This kind
of filter is often referred to as a "join" or a "join statement". It's also a very efficient filter that can
readily be handled very smoothly by all data bases ISAM or SQL.

CLARION, SQL AND THE CLARION HANDY TOOLS A USER’S TUTORIAL

© 2004 - The Clarion Handy Tools Page 17.03.2004 - 3

This join statement says to the orders browse, show me only the orders where the condition
ORD:CustomerID = CUS:CustomerID is true. When you select a record in the customer browse,
the right side of the join statement is "resolved" to the actual value of CUS:CustomerID for the
selected customer record, so that a query in fact might be: Ord:CustomerID = 9342342. In order
for this condition to result in some records that display in your orders browse a request is sent to
the SQL data base for a batch of fields and records. That request could look something like this
once translated into the SQL "language".

SELECT
ORD.`ORDERID`,ORD.`CUSTOMERID`,ORD.`EMPLOYEEID`,ORD.`ORDERDATE`,ORD.`SHIPPEDDATE`,
ORD.`SHIPVIA`,ORD.`SHIPPOSTALCODE`,DET.`ORDERID`,DET.`PRODUCTID`,DET.`UNITPRICE`,
DET.`QUANTITY`,DET.`DISCOUNT`,PRO.`PRODUCTID`, PRO.`PRODUCTNAME`

FROM `ORDERS` ORD, `ORDER DETAILS` DET, `PRODUCTS` PRO

WHERE (ORD.`CUSTOMERID` = 9342342)

ORDER BY {fn UCASE(PRO.`PRODUCTNAME`)}

Components Of An SQL Data Request

This SQL data request has four components, a SELECT component, a FROM component, a
WHERE component and an ORDER BY component. Only the SELECT and FROM are normally
required. Leaving out the WHERE clause results in receiving the entire data set. Leaving out the
ORDER BY clause results in an unordered data set. Notice that the filtering and ordering
operations of an SQL statement are separate. This is a critical difference between SQL and ISAM
that very often necessitates significant data design changes between ISAM and SQL applications
that appear to do the same thing. Many of the changes have to do with how the tables are keyed.
A lot of the time SQL keys can be less complex, for the very reason that ORDER and WHERE
can be handled separately.

The SELECT component enumerates the fields that you want to see in your browse. Clarion does
this very well and automatically for you based on the fields that you've populated on your browse.

The FROM component enumerates the data bases from which the selected fields will come.
Clarion does this very well and automatically for you based on the TABLE relationships that you
design in your dictionary and the TABLE SCHEMATIC you lay out when you create your browse.

The ORDER BY component is normally determined by the key placed on the browse tab that's
currently in use. Clarion does this reasonably well, and automatically based on the keys declared
in the dictionary. On the other hand, SQL data bases are perfectly capable of returning ordered
data sets even though there may not be a key for the requested data order. Hence, the one-key-
for-every-browse-sort-order-used principle applied by Clarion browse templates is more of a hang-
over from the ISAM files days than a SQL requirement.

The WHERE component is the "filter" aspect of your browse. When you determine that your
orders browse should display orders for a specific customer selected in a "parent" browse, you'll
use what's known as a "join" (the customer browse and the orders browse are joined via a
common field in both data tables). Joins are expressed in SQL in the WHERE portion of an SQL
request string. It's the WHERE clause of an SQL request that stops the data base from sending
you the entire data set when you only want to see a specific subset. It's the WHERE clause that
often determines the speed of your browses, reports and processes. Bad WHERE clauses cause
slow access, when they cause the data base to send you more records than you need to fulfil a
specific requirement.

Often, Clarion - right out of the box - does this WHERE stuff very well, and very automatically for
you based on the Clarion filter string that you apply to your child browse via the browse template.
Clarion uses an ABC browse class function called SetFilter() to apply a filter to the browse and
then you apply a "reset field" on the browse to indicate that the browse should be reset when the

CLARION, SQL AND THE CLARION HANDY TOOLS A USER’S TUTORIAL

© 2004 - The Clarion Handy Tools Page 17.03.2004 - 4

value in the reset field changes. So, when you select a new customer record in the parent browse,
the child browse realizes it must reset itself because the value of the reset field
(CUS:CustomerID) has changed. A new request goes out to the data base and a new data set
comes back and is displayed in your orders browse.

About Joins, Filters And Range Limiters

If you're new to SQL it may not even have occurred to you that you can "join" two data bases like
this via a filter and a reset field. Coming from ISAM data bases - TPS files, for example - your first
inclination is to do this via a "Range Limiter". If that's the case, be aware that a range limiter, just
like a filter, ends up being part of an SQL request string with the range limit portion resulting in a
WHERE clause. The ABC templates and classes, in conjunction with the file driver eventually
translate the range limit request into an SQL WHERE clause which is sent to the data base as
part of a data request string or "select statement". So there is seldom, if ever, an advantage to
using a range limiter in an SQL application. In fact, as we will explain below, range limiters can
encourage keying practices that are, at best, unnecessary with SQL data bases and, at worst,
result in bad SQL request strings.

In Clarion applications that use SQL data bases there's no guarantee, that the application of a
range limiter is going to be faster than using a simple filter. The speed comes from how easily
your range limiter or your filter statement can be translated into the SQL language by the Clarion
file driver. If the range limiter and the key definition on which it is based are too complex or the
filter statement you've written cannot be directly translated into SQL, bad things can happen to
good applications. When this situation arises, your filters or range limiters of this type will still
work, but the end result can often be unsatisfying slow.

Here you have a case, then, of Clarion being too powerful, or perhaps too nice to its developers to
tell them that what they're doing is going to result in badly formed SQL statements and speed-
crippled applications. In a worst case situation where the Clarion file driver realizes it hasn't a
prayer in translating your range limiter or filter into a proper SQL statement, the file driver simply
requests the entire data table and then filters it locally (client side). While that may achieve the
end-result you want, it's truly ill advised to let this scenario unfold in high-use situations or
situations where data base sizes are greater than a few thousand records. SQL data bases are, in
effect, intelligent "data servers" and they are perfectly capable of filtering data sets before they're
sent across the network or the internet to the connected client - as long as the SQL request
strings are well formed with good WHERE clauses. It's folly to design applications that filter at the
client side, unless you're using ISAM files where there's no other viable option.

About INNER JOINS and OUTER JOINS

With keyless columns and dynamic, on-the-fly sorts, certain problems can arise when two or more
tables are joined in the Clarion dictionary and are presented together in one view. Your browse
presents a single view with columns displayed from, say, three different tables acting as if they
were one table. In that case, an internal join statement, generated by the Clarion file drivers, is
appended into the SQL SELECT. By default, Clarion browses always use an OUTER JOIN to
accomplish this. However, to resolve the elements of an OUTER JOIN, the Clarion file driver relies
heavily on the current key in place on the column, and you haven’t supplied a key on at least
some of the browse columns because we’ve told you that CHT applies sort orders dynamically –
whether a key is available or not.

Consequently, the SQL code generated by the Clarion file driver to express this conjunction-of-
three-tables-as-one can end up being incorrect. To further compound the problem and the
possibility of the file driver making an error, the syntax for OUTER JOIN expressions varies vastly
from one flavor of SQL to another, so much so that one wonders why INNER JOINS are not the

CLARION, SQL AND THE CLARION HANDY TOOLS A USER’S TUTORIAL

© 2004 - The Clarion Handy Tools Page 17.03.2004 - 5

default, with OUTER JOINS applied where necessary, by developer intervention. In some data
base back ends OUTER JOINS are expressed as part of the WHERE clause while in others they
are separate expressions.

Suffice to say that where such issues arise, you can in many cases simply suggest to the ABC
browse template’s table-schematic that it should use an INNER JOIN. Whether you need to do
this or not may depend entirely on which data base you’re using. But using an INNER join can
solve a multitude of what appear to be unrelated problems, from duplicate browse records to
queries that won’t resolve into all of your tables, to update forms that throw errors when new
records are inserted. Here in pictures, is how to apply an INNER JOIN.

Joins That Keep Separate Browses In Synch

You need to keep two separate browses displayed on the same window in synch as illustrated by
HNDACCES.APP. The browse procedure entitled SQLFilter_ExplorerBrowse provides a real-life
example of this. A customer browse is used to select or locate a specific customer and an orders
browse displays that customer’s orders, including detail lines incorporating product descriptions
and quantities. To make this happen, some mechanism must be put in place to keep the CHILD
browse, orders, in synch with the PARENT browse, customers, any time a new customer record is
selected.

CHT provides you with a one-stop dialog where you can describe the relationship established
between these two separate browses. This, of course, assumes you’ve actually set up a
relationship in your data design. The CHT template dialog to consult in this case is called “Join”.
Here, again illustrated with pictures, are the join settings on SQLFilter_ExplorerBrowse.

See also illustration, next page.

CLARION, SQL AND THE CLARION HANDY TOOLS A USER’S TUTORIAL

© 2004 - The Clarion Handy Tools Page 17.03.2004 - 6

That results in the CHT template writing the following Clarion code into our HBrwx.AutoInit()
method where CHT browse object initializations occur.

SELF.SetSQLJoinFilter(Cus:CustomerID,'Ord:CustomerID','Cus:CustomerID',|
HPROP:StringVariable)

An SQL trace of a SELECT statement on this browse looks like the one below (next page). Note
that the section illustrated in orange text, below, is caused by the join settings illustrated above.
It’s productive to point out also that the AND portion of this WHERE clause was written by the
Clarion file driver based on the INNER JOIN described between the tables ORDERS, DETAILS
and PRODUCTS. In the background Clarion looks after keeping your all-in-one-view tables in
synch while your join concerns are with displaying only orders where ORD:CustomerID = “ALFKI”
(The resolved right-hand-side of this expression is dependent on which customer is selected in
the customer browse).

CLARION, SQL AND THE CLARION HANDY TOOLS A USER’S TUTORIAL

© 2004 - The Clarion Handy Tools Page 17.03.2004 - 7

SELECT
ORD.`ORDERID`,ORD.`CUSTOMERID`,ORD.`EMPLOYEEID`,ORD.`ORDERDATE`,
ORD.`SHIPPEDDATE`,ORD.`SHIPVIA`,ORD.`SHIPPOSTALCODE`,DET.`ORDERID`,
DET.`PRODUCTID`,DET.`UNITPRICE`,DET.`QUANTITY`,DET.`DISCOUNT`,
PRO.`PRODUCTID`,PRO.`PRODUCTNAME`

FROM `ORDERS` ORD, `ORDER DETAILS` DET, `PRODUCTS` PRO

WHERE (UCASE(ORD.`CUSTOMERID`) = 'ALFKI')

AND ORD.`ORDERID`=DET.`ORDERID` AND DET.`PRODUCTID`=PRO.`PRODUCTID`

ORDER BY {fn UCASE(PRO.`PRODUCTNAME`)} DESC

One other little detail that you don’t have to think about and which CHT templates handle for you
automatically as a result of your having completed the “Join” dialog, is resetting the child browse
when the parent browse receives a new selection. In the BRWx.TakeNewSelection() function
servicing the parent browse the following code is embedded by our template:

BRW1.TakeNewSelection PROCEDURE

CODE
PARENT.TakeNewSelection
!--- Start: HNDTOOLS.TPL O8A1.4 © 2004 (ExplorerBrowse) ------------
!Services the SQL join between this browse (the PARENT, named: BRW1)
!and a child HNDBrowse Instance named: HBrw8
!The child browse resets whenever (Cus:CustomerID) changes value.
HBrw8.SQLResetQueue(SELF.ILC.GetControl(),False)
! --- End: HNDTOOLS.TPL O8A1.4 © 2004 (ExplorerBrowse) -----------

Our template-embedded comments pretty much say it all. Whenever CUS:CustomerID changes,
because a new record has been selected in the PARENT browse, the CHILD browse is issued a
forced reset. This causes the WHERE clause to be resolved differently.

WHERE (UCASE(ORD.`CUSTOMERID`) = 'XXXXX')

And results in a new set of order records being displayed. Total lines of embed code written so far
to make all this happen, zero.

Data Design And The Danger Of Certain Assumptions And Practices

Over the years I've had many after-the-fact consulting encounters with companies who had just
finished moving their commercial software application from an ISAM environment to an SQL
environment only to find that the reworked-for-SQL application performed badly, and in some
cases it didn't work at all. If that transition didn't drive them out of business altogether, as often as
not, fingers were pointed squarely at Clarion as the source of the problem when in fact the
problem was really a combination of things, including data design issues that could easily have
been resolved:

1. With a long, hard look at the data dictionary.
2. With a few weekends spent reading an SQL book.
3. With some considerable time spent understanding how Clarion actually works and interacts

with SQL back ends.

While it is accurate to say that Clarion works equally well with ISAM files and with SQL data
bases, it is not equally accurate to say that well-designed ISAM applications necessarily work
well, or at all, if configured to use an SQL data base back end.

There are any number of possible strategies developers might use to try and improve his/her SQL
applications - better data design is perhaps the most important of these. If you're not prepared to
change your data base design for SQL (where necessary), you should probably stay FAR AWAY
from SQL because you'll most certainly screw it up. Once again, while it is accurate to say that
good data design is important both for ISAM files and SQL data tables, it is not equally accurate

CLARION, SQL AND THE CLARION HANDY TOOLS A USER’S TUTORIAL

© 2004 - The Clarion Handy Tools Page 17.03.2004 - 8

to say, or assume, that a good ISAM data design will work equally well in an SQL environment.
One of the main rules of thumb you should follow with SQL is to use a numeric integer, unique ID
field in EVERY data table and place a primary key on that field. That primary key should NEVER
be a compound key. A corollary to that rule of thumb is to ALWAYS create your joins using this
unique ID, and NEVER make joins using compound keys. Range limiters as implemented in
Clarion's templates encourage complex, compound keys because with ISAM files, where the
range-limiter idea originated, the concepts of joining and ordering child tables are often
inextricably intertwined. Yet very simple relationship statements like Ord:CustomerID =
Cus:CustomerID are all that are EVER required to express a join between two data tables when
you separate the job of joining and ordering into two operations the way that SQL does with
WHERE and ORDER BY.

The Merits Of View{PROP:SQL}

Another strategy often used by developers to make their Clarion SQL applications work better, is
to intervene heavily in the normal operation of the Clarion ABC templates and classes. They write
and send their own SQL select statements to the data base via View{PROP:SQL}. This is an
acceptable strategy as far as it goes if you know what you're doing and have both strong SQL
skills and strong Clarion embedding skills. Relying on this heavily kind of defeats the purpose of
having a sophisticated code generation system like the Clarion IDE. If it has to come down to
writing your own SQL embeds in a Clarion browse you had better know what you're doing or you
may find yourself working at cross-purposes with the natural flow and placing embeds to work
around ABC behavioral changes caused by your own embeds.

It's perfectly clear that while using View{PROP:SQL} is one way to guarantee the quality of the
SQL (assuming you know good SQL) we've already outlined that the SELECT and FROM portion
of an SQL data request are hardly ever the problem, while the WHERE clause is the most
frequently the problem and the ORDER BY component can be used more flexibly than the ABC
browse template lets on. In other words, inside ABC, resorting to View{PROP:SQL} is most of the
time not necessary.

The Merits of View{PROP:SQLFilter}

A better strategy is to intervene only in the WHERE component of an SQL data request string.
You can do this using View{PROP:SQLFilter}. In this case, the SELECT, FROM and ORDER BY
components of the data request string are handled by the Clarion driver and the WHERE
component is, at least partially, handled by the developer. Armed with this bit of knowledge you
might set about improving your SQL application and ensuring that all data requests are filtered by
the data base engine, server side, and not by your application at the client side of the data
transaction. This assumes, of course that you know what a well-formed SQL WHERE clause
looks like and you know where to tell the ABC templates and Classes to apply the
View{PROP:SQLFilter} statement. This is the strategy used by The Clarion Handy Tools. If you
ask them to, they'll apply View{PROP:SQLFilter} on your behalf, ensuring first, that the SQL
WHERE clause being applied is optimum SQL and that it's done in a way that co-operates with
the ABC Classes.

The Merits Of Clarion Handy Tools Query Language

Almost eight years ago, The Clarion Handy Tools introduced a query control template called
QueryParsingFilterControl that works hand-in-hand with other CHT and ABC templates on all
browses, processes and reports to easily provide optimized filtering that works seamlessly in
ISAM or SQL browses. (SQL capability was added more recently). CHT query language is a
simplified, real language way of expressing a filter statement that can be adapted on the template
to work in English, Dutch, Germany, Spanish, in fact in any language you want it to. Its chief

CLARION, SQL AND THE CLARION HANDY TOOLS A USER’S TUTORIAL

© 2004 - The Clarion Handy Tools Page 17.03.2004 - 9

purpose is to provide a simplified end-user accessible way of writing dynamic filter statements in
your applications.

Here is an example:

PRODUCT CONTAINS SYRUP AND DATE RANGE 16/01/1994, 16/01/1998

Translated to an SQL WHERE CLAUSE by our built-in CHT query parser this becomes:

WHERE (UCASE(PRO.`PRODUCTNAME`) LIKE '%SYRUP%' AND ORD.`ORDERDATE` BETWEEN {ts '1994-
01-16 00:00:00'} AND {ts '1998-01-16 23:59:59'})

Translated to a Clarion filter statement by our built-in CHT query parser this becomes:

MATCH(PRO:ProductName, '*SYRUP*', 17) AND ORD:OrderDate_Date >= 70511 AND
ORD:OrderDate_Date <= 71972

If we send this Clarion filter statement to an SQL data base via the Clarion ODBC file driver - the
way you would with ABC.SetFilter() - the end result bears little or no resemblance to the SQL
translation we gave you above. In fact what the driver does is something equivalent to requesting
the entire orders data table. Then it filters the returned data locally, as if the data base were an
ISAM file, using the Clarion filter string provided. Not all pure-Clarion filter statements sent to an
SQL file driver would result in this ISAM-like behavior. In fact good data design, proper use of
keys and care in the ordering of filter terms will help improve the chances of a good translation to
SQL. But this is something you'd have to get used to doing. We're only pointing out, as we did
above that what works fine in an ISAM application doesn't necessarily work well in an SQL
application. One thing is certain, if you expect your users to be able to create queries for
themselves, their chances of doing it properly are a lot higher with CHT query language than with
either SQL statements or Clarion statements because CHT query statements resemble real
language.

Real Language Queries VS Query By Example

CHT query language resembles the user's own language and because all human beings have
built-in language processors, that pretty much guarantees that real-language queries are faster to
produce, reuse and understand than clicking through several layers of a query wizard tool.
Here’s a developer quote about his experience with just such a query tool:

“I looked at Camtasia but it is overkill for this particular app. EZHelp works great, but
needed something more to explain setting up a filter with Qxxxx Wxxxxx, which
generates 98 per cent of the help calls. My clients are not well versed in computer logic.“

Logic has nothing to do with it. It’s experience. Everybody has experience with language. Few
people have experience with multi-layered query tools. Having said that, there are times when an
easy-to-use query builder can come in handy. In the O8A1.0 build we've given you a built-in
query builder support tool for query-shy developers and end users. The question mark button
populated by the QueryParsingFilterControl template can be made to pop up the CHT query
builder by setting a switch on the template.

CLARION, SQL AND THE CLARION HANDY TOOLS A USER’S TUTORIAL

© 2004 - The Clarion Handy Tools Page 17.03.2004 - 10

The tool is tightly based around the CHT query language, which it produces, and it provides
memory assistance with query keywords and saves having to type column names. The ultimate
question of any query-builder tool is: "Can it write good SQL?" If not, you haven't done a thing to
improve the SQL performance of your application. The new CHT query-builder provides a dual
benefit:

1. It creates CHT query language, which users can understand.
2. It produces top-notch, efficient SQL which your data base understands.

The end result is efficient WHERE clauses, faster-running applications and a lot less network
(intranet or internet) traffic.

The New CHT Query Builder Tool

Remember how this all hangs together. The Clarion Handy Tools know where and how to apply
View {PROP:SQLFilter} for maximum efficiency in an ABC environment. They know how to
generate optimum SQL WHERE clauses starting from a user-friendly query language that our
templates allow you to set up in any native language. And now, in build (O8A1.x) we've added a
built-in easy-to-use tool that lets you or your end users design CHT-style queries via a point and
click interface. Like CHT query language, the CHT query builder tool is a marvel of simplicity
compared to most query wizard tools. It helps your users build real-language queries that they can
understand and translates them into something your back end data bases (ISAM or SQL) can
understand.

Here's an example CHT query applied on the SQL ExplorerBrowse example procedure in the
demonstration application:

CLARION, SQL AND THE CLARION HANDY TOOLS A USER’S TUTORIAL

© 2004 - The Clarion Handy Tools Page 17.03.2004 - 11

PRODUCT CONTAINS SYRUP AND DATE OVER 22/07/1993 OR PRICE UNDER 32 AND PRODUCT
CONTAINS KK

Translated to SQL for SQL back ends:

(UCASE(PRO.`PRODUCTNAME`) LIKE '%SYRUP%' AND ORD.`ORDERDATE` > {ts '1993-07-22
00:00:00'} OR DET.`UNITPRICE` < 32 AND UCASE(PRO.`PRODUCTNAME`) LIKE '%KK%')

Translated to Clarion Query Language for ISAM back ends:

MATCH(PRODUCT, '*SYRUP*',17) AND DATE > 70333 OR PRICE < 32 AND MATCH(PRODUCT,
'*KK*',17)

Normal behavior for the query tool is to let users build the query in the form of CHT query
language - remember this can be made to resemble the end-user's own language using the CHT
template interface called "Query Keywords".

This CHT query is passed to the browse class variable HBrwx.Query and is then translated to
SQL or Clarion query statements with a call to HBrwx.PostQuery(). This single, automatic call
made for you by the CHT classes, translates and posts the query to the back end and refreshes
your browse. The resulting back end filter can be found in HBrwx.Filter. Given the CHT query
shown above, that variable would contain one of the above translations depending on the state of
the HBrwx.GetUseSQL() setting, a property of the CHT browse extension classes that can be set
on the template or can be set at run-time with a call to HBrwx.SetUseSQL(True).

CLARION, SQL AND THE CLARION HANDY TOOLS A USER’S TUTORIAL

© 2004 - The Clarion Handy Tools Page 17.03.2004 - 12

For example, template code like the following is triggered when the question mark button above
the "CHT Query" control is clicked in the SQLFilter_ExplorerBrowse procedure.

This code does the following:

1) It launches the query builder interface which returns a query (or nothing if cancelled) to a
local, template-created variable, (i.e. the USE variable of the query control). This is the
variable that's populated inside any CHT query control.

BrwFilter2 = SELF.QBInterface(SELF.OQ)

2) This call asks you to create a query or cancel. Since SELF.Query, the filter class variable
that transports the query is referenced by the template to the query control's USE variable,
(in this case BrwFitler2) typing or selecting a query into the query control is the same as
setting SELF.Query to the CHT filter that you're typing or selecting.

3) If the query is accepted as confirmed by SELF.QBInterfaceGetCancelled() the code issues
SELF.PostQuery(). This among other things, validates the query, and posts an "Invalid
Query" message if the query is syntactically incorrect. It also does a translation of the CHT
query language version of your query to the requested back end value as determined by
the filter class flag returned by SELF.GetUseSQL(). The translation is stored in SELF.Filter
after the SELF.PostQuery() call. If SELF.GetUseSQL() is False, the CHT query is
translated into a standard Clarion language filter like MATCH(PRODUCT, '*SYRUP*',17)
for PRODUCT CONTAINS SYRUP. And if SELF.GetUseSQL() is True, then the CHT query is
translated into an SQL language filter like UCASE(PRO.`PRODUCTNAME`) LIKE '%SYRUP%'
for PRODUCT CONTAINS SYRUP.

Remember, the value of SELF.Query is not changed. It still appears in the query control as CHT
Query Language. But a translated version of SELF.Query is now available in SELF.Filter. This
SELF.Filter value is transferred to ABC.SetFilter() if SELF.GetUseSQL() is False. The value of
SELF.Filter is passed to View{PROP:SQLFilter} if SELF.GetUseSQL() is True.

If you want to post a query in a CHT browse without the query control present you can still do so
as follows, for example:

HBrwx.Query = 'COMPANY CONTAINS HORN'
HBrwx.PostQuery(EVENT:ScrollTop, True)

Or using the query builder interface:

HBrwx.Query = HBrwx.QBInterface(HBrwx.OQ)
IF NOT HBrwx.QBInterfaceGetCancelled() THEN

HBrwx.PostQuery(EVENT:ScrollTop, True)
END

CLARION, SQL AND THE CLARION HANDY TOOLS A USER’S TUTORIAL

© 2004 - The Clarion Handy Tools Page 17.03.2004 - 13

That's essentially what we've done by embedding under the Inject Customer Query button again
on the SQLFilter_ExplorerBrowse procedure. The call to HBrwx.PostQuery() translates and resets
the browse so that the query is executed. In that Inject Customer Query code, we're clearing
HBrwx.Query right after the call to HBrwx.PostQuery() so that the next time the browse is reset -
like when you click another header - the browse refills completely without the query value in place.
If you provide HBrwx.PostQuery() a second parameter of True and include an Order By Clause in
your query, browse order is reset to the column indicated in the Order By clause.

Here is the actual code embedded under the Inject Customer Query button in:
SQLFilter_ExplorerBrowse().

!This calls the new in O8A1.0 query builder interface.
!This filter will clear as soon as you change browse order to another column.
HBrw5.Query = HBrw5.QBInterface(Hbrw5.OQ)
HBrw5.PostQuery(EVENT:ScrollTop, True) !Accept Order By clauses.
IF NOT HBrw5.QBInterfaceGetCancelled() AND HBrw5.Filter THEN

!If the query resulted in an SQL filter.
!This code is just to satisfy the code under ?ProcessButtonClarion
!It saves the query for later use.
HBrw5.Locator.Alt = HBrw5.Query
!Query not retained after query posted and translated to SELF.Filter.
!Hence the next browse reset clears the query.
CLEAR(HBrw5.Query)

END

Note that we're saving the current query in HBrw5.Locator.Alt so that when you press the next
button CHT Query To Process the query can be recovered and passed to a process. The code
embedded to do that is:

IF NOT INSTRING('ORDER BY', HBrw5.Locator.Alt, 1,1) THEN
!A CHT Query Language Query is able to pass through an ORDER BY statement.
!Add it in if there isn't one already there.
ProcessQuery = CLIP(HBrw5.Locator.Alt) & ' ORDER BY ' & |
HBrw5.GetOrderColumnHeader()

ELSE
ProcessQuery = CLIP(HBrw5.Locator.Alt)

END

Here we're recovering the query stored in HBrw5.Locator.Alt and adding an ORDER BY clause (if
needed) using the HBrwx.GetOrderColumnHeader(). When your query is in CHT Query language
format, you can add an ORDER BY clause and the PostQuery() function will translate that
correctly for the back end. The process procedure CHTQueryToHTMLCustomerProcess() is called
with a parameter variable containing the CHT query language version of our query. We'll look
closer at this process in a second HNDACCES.APP tutorial.

Programmer-Written SQL Filters

There will come a time in any design when you may need to extend query depth beyond what the
CHT query control, CHT join setups and the Clarion driver-supplied joins, discussed above, can
supply. And if you’re fluent with SQL you may want to apply these additional, or replacement,
WHERE components as SQL statements directly to the back end. To do that, the CHT parser
classes, which are available whenever a CHT browse extension is applied to your browse, provide
two direct-to-back-end filtering methods.

These are:
1. HBrwx.AppendSQLFilter('Your filter here') or HBrwx.AppendSQLFilter(YourFilterVar)
2. HBrwx.ReplaceSQLFilter('Your filter here') or HBrwx.AppendSQLFilter(YourFilterVar)

CLARION, SQL AND THE CLARION HANDY TOOLS A USER’S TUTORIAL

© 2004 - The Clarion Handy Tools Page 17.03.2004 - 14

AppendSQLFilter does exactly as the name implies, it appends another condition to the WHERE
clause using AND. ReplaceSQLFilter follows its namesake also and replaces all existing filters on
the browse (except Clarion driver-inserted JOIN expressions) with the SQL statement that you
provide it.

If you open any of the browse procedures in HNDACCES.APP, say, SQLFilter_ExplorerBrowse
in the Clarion Embeditor, and search on DEVELOPER NOTE: you will encounter the following
embed comment placed by the CHT browse extension template:

Embedding a hard-coded constant filter is really not very flexible so we suggest you embed one or
more HBrwx.AppendSQLFilter(YourFilterVar) statements instead. To capitalize on this, all you
need to do is insert a legal SQL statement into your variable, YourFilterVar and reset the browse.
Where, in the flow of your procedure, you change the value of this variable is very flexible and
pretty much up to you. The variable could be populated right on the browse for the user to insert
an SQL statement, or it could be populated in a dropdown selection list or a radio control. How
ever you decide to insert SQL into your variable, once the statement changes, simply refresh the
browse using ThisWindow.Reset(True) or HBrwx.HardResetBrwQueue(). Which of these reset
methods you use depends on how much resetting needs to be done. The first resets the entire
window including any other browses found there. The second only resets the browse addressed
by the HBrwx instance.

We have an example of SQL-direct-to-back-end using AppendSQLFilter() in the HNDACCES.APP
browse called SQLFilter_ExplorerBrowse. Note that on its window is a query control that looks
like this:

We want to be able to enter real SQL queries on this control instead of CHT Query Language. To
do that we’ve embedded a call to the query builder under the question mark (?) button and a call
to refresh the browse whenever the query control receives an EVENT:Accepted.

CLARION, SQL AND THE CLARION HANDY TOOLS A USER’S TUTORIAL

© 2004 - The Clarion Handy Tools Page 17.03.2004 - 15

In the BRWx.ApplyFilter() embed point we’ve embedded an HBrwx.AppendSQLFilter() statement
as outlined above. So an SQL filter statement can be created with the query builder, or an SQL
filter can be entered directly, by typing into the query control. Either of these actions causes the
browse to be reset and the SQL filter to be applied. Since we’ve used HBrwx.AppendSQLFilter(),
the filter we enter will not remove or disturb any of the existing filters we have in place on the
browse. In other words, you are able to drill further down into the existing data set if that’s what
you want to do.

Under the question mark button a call to HBrwx.QBInterface() is hand-embedded with the second
parameter set to True. This causes the query builder to translate all statements direct to SQL in
the query builder instead of presenting and returning them as CHT Query Language. When the
query builder returns, the browse is reset with Hbrwx.HardResetBrwQueue().

Under the query control itself, we’ve embedded only the code to reset the browse since the query
has been typed right into our query variable SQLFilter. The downside of allowing direct entry is
that the SQL being entered is not pre-qualified and guaranteed to be accurate as it is by the using
the query builder above. One way or another, the back end will tell you soon enough if your SQL
statement is bogus.

In the DEVELOPER NOTE: area of the ABC.ApplyFilter() method we’ve hand embedded a call to
HBrwx.AppendSQLFilter(SQLFilter) to add our SQL filter statements without disturbing any other
WHERE conditions already in place on the browse. If our filter is blank, it isn’t applied so that a
browse reset clears that portion of the WHERE statement that comes from our SQLFilter variable.

CLARION, SQL AND THE CLARION HANDY TOOLS A USER’S TUTORIAL

© 2004 - The Clarion Handy Tools Page 17.03.2004 - 16

Remember that with each browse reset, a fresh, full select statement including SELECT, FROM,
WHERE and ORDER BY is sent to the back end. The WHERE clause is re-built from scratch, with
each new reset applying the following information:

1. Any INNER/OUTER JOIN conditions described in the browse table schematic are added in
from scratch by the Clarion file driver.

2. Any JOIN conditions described on the CHT “Join” dialog are added from scratch by CHT
classes.

3. Any ABC.SetFilter() conditions are added in from scratch by the ABC Classes. We suggest you
disable ABC.SetFilter() as explained in this essay since this is prone to producing bad SQL due
to the driver not always being able to translate complex Clarion filter statements to SQL.

4. Any CHT Query control, CHT Query Language, conditions are automatically translated to
optimal SQL and are added in from scratch.

5. Any HBrwx.AppendSQLFilter() conditions applied by your embeds are added in from scratch. A
blank filter is not appended and therefore has no effect.

About ABC Page-Loaded and File-Loaded Browses

This is a good time to discuss, however briefly, another aspect of Clarion browses that Clarion
users frequently misunderstand. An ABC browse has two fundamental settings that can have a
huge impact on browse speed. These are the page-loaded and file-loaded settings. When to use
which one is a critical piece of knowledge that can impact the apparent speed of an SQL
application to an enormous extent.

Remember my earlier assertion that SQL data bases work by request and response. A request
goes out to a data base table for a set of data records and a response - a subset of data meeting
the request - comes back. This request/response model implies something you may not have
given much thought to, but which should be kept foremost in your mind when designing any SQL
application. The corollary implication of any SQL request is that the request is for a subset of table
records not the entire data table.

Unless your ABC browse has a filter in place to limit the records requested when the browse
initially opens, you're asking the data table for all the records before the browse user has been
given a chance to indicate which records he/she actually wants to see. This is a hold-over from
Clarion's ISAM days. ISAM data bases are filtered at the level of the client application, not the
data base. That being the case, the implication was that there is no penalty for initially displaying
(or at least appearing to display) the entire data base when the browse opens. Anyone who has
used large TPS files across a LAN knows this assumption is a costly one in terms of performance
and speed.

So the question remains, how really useful is this display-before-query behavior given what you
must pay for it in terms of network file traffic and speed?

Page loaded browses, thus were introduced to chop the data requests up into bite-sized pieces.
When an unfiltered, page-loaded browse initially opens it does not fetch all 100,000 records in the
data table. It fetches the first 15-20 of them, the number depending on how may rows your
browse is designed to display. This gives the illusion of speed. "Wow I loaded a 100,000 record
Firebird data table in 2 seconds flat!” Get a grip Kelvin. You didn't load 100,000 records. You
loaded a couple of dozen. Thankfully the remaining 99,976 records didn't have to trundle across
the network cable to your PC only to be cast aside when you finally decide that you want to see
them back-to-front or you only want to see orders pertaining to a specific city. Because it provides
an illusion of speed, page-loading fosters the corollary illusion of efficiency. While efficiency is
most definitely gained, because the entire result set of that initial non-query didn't travel across

CLARION, SQL AND THE CLARION HANDY TOOLS A USER’S TUTORIAL

© 2004 - The Clarion Handy Tools Page 17.03.2004 - 17

the network, that doesn't mean that there was no impact on the data base back end which has
been forced to set aside resources to accommodate what is in essence an incomplete, bogus
query encompassing the entire table that must be handled until such time it is acted on or is
simply cancelled and the resources and cursors released.

Given what I've said above, a page-loaded browse is not the most efficient browse model after all.
A filtered file-loaded browse is far more efficient if you make the assumption that the filtered
browse is fetching records that someone actually wants to see. At least in that case, the records
that were moved across the network and the resources that were set aside by the SQL data base
have a valid reason for being. A filtered page-loaded browse is perhaps still more efficient if you're
not just "fishing" for data and paging aimlessly through the browse all the while causing hits on the
back end. Page-loaded browses can impose numerous file hits for the same data set displayed in
the same order on the same query. File-loaded browses don't need to go back to the data base
under those conditions.

In most situations, a browse with no query is a waste of network and data base resources. That
being the case, we've provided a new browse dialog in the O8A1 build that lets you create Clarion
browses that do not display data unless there's a query in place. As soon as the browse query is
cleared, the ABC browse mechanism no longer sends a WHERE-less select to the data base
requesting all table records. The browse simply sits empty, waiting for a new query. With this
feature enabled, on the "Data With Query Only" browse dialog, the only thing that can make your
browse inefficient is incompetent queries that ask for more data than is actually required.

By way of a reminder, ExplorerBrowse and LocatorOverRideControl browses may be either page-
loaded or file-loaded. The decision is entirely yours. HandyMarkerBrowses, on the other hand, are
file-loaded only, and for good reasons which we’ll explain now!

More than a few times, CHT users have asked me, "Why don't you introduce a page-loaded
marker browse? I have a 100,000 record data base that I want to load and have users select and
mark records in. File loading it is so slow!" Think about that question for a minute and realize what
you're implying that the users of your application are going to do. They are going to be asked to
flip through 100,000 record data base to find and mark a few records to be sent to a print or
process procedure. "No", you vociferously proclaim, "I'm going to add a query control to the

CLARION, SQL AND THE CLARION HANDY TOOLS A USER’S TUTORIAL

© 2004 - The Clarion Handy Tools Page 17.03.2004 - 18

browse. My users are going to narrow the number of records to a small subset of the file, and
mark a few records within that subset." Well, now you're talking sense! In actual fact, the only
real reason you asked for a page-loaded marker browse was to eliminate the initial load period
while all 100,000 records loaded. Now you have a way to reduce initial browse load time to zero
seconds. Create a HandyMarkerBrowse that loads no records until a query is entered. There’ll be
no more waiting or wasted network and data base resources and no more multiple file hits as the
user pages through his data set, because all the records they've asked to examine are local.

If you do have large numbers of dissimilar records to mark, populate also on your browse a
corollary template to HandyMarkerBrowse called HandyMarkerBrowseSetsControl. This lets
your users accumulate sets of marked records by name, which can be recalled at will. There’s an
example of this in another CHT demo application called HNDLBXDM.APP in the procedure called
HandyMarkerBrowseSelectorWithSets. Here’s an illustration of that in action:

This essay has been expanded from its earlier version to include more information about browse-
related issues that keep coming up on the CHT Web Group support server in the form of
developer questions. The earlier essay also discussed issues relating to reports and processes
and how CHT classes can increase the productivity and speed of ABC report and process
templates. Those portions of this document have been moved to a second HNDACCES.APP
essay which will be available from our download site or from the Application Tutorial menu in
HNDACCES.APP.

Have fun!

Cheers...
Gus M. Creces
The Clarion Handy Tools Page
support@cwhandy.com

